Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 831
Filtrar
1.
Food Chem ; 450: 139293, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38631207

RESUMEN

Lentils have a valuable physicochemical profile, which can be affected by the presence of antinutrients that may impair the benefits arising from their consumption. Different treatments can be used to reduce these undesirable compounds, although they can also affect the general composition and behaviour of the lentils. Thus, the effect of different processing methods on the physicochemical and techno-functional properties, as well as on the antinutritional factors of different lentil varieties was studied. Phytic acid was eliminated during germination, while tannins and trypsin inhibitors are mostly affected by cooking. Functional properties were also altered by processing, these being dependent on the concentration of different nutrients in lentils. All the studied treatments affected the physicochemical profile of lentils and their functional properties. Cooking and germination appear to be the most effective in reducing antinutritional factors and improving the physicochemical profile of the lentils, meeting the current nutritional demands of today's society.

2.
Food Funct ; 15(5): 2773, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38385976

RESUMEN

Correction for 'Exploiting Locusta migratoria as a source of bioactive peptides with anti-fibrosis properties using an in silico approach' by Carla S. S. Teixeira et al., Food Funct., 2024, 15, 493-502, https://doi.org/10.1039/D3FO04246D.

3.
Foods ; 13(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38338626

RESUMEN

Germination is a natural, simple, and economical process used to improve the quality of nutritional and technological grains. In this study, native and sprouted sorghum flours were characterized regarding their technological properties (particle size distribution, water, and oil absorption capacity, swelling power and solubility, microscopy of starch granules, and pasting and thermal properties). Nutritional and phytochemical characterization profiles, including free sugars, fatty acids, organic acids, tocopherols, and phenolic compounds, were explored through chromatographic methods. The antioxidant, anti-inflammatory, and cytotoxic activities of the respective hydroethanolic extracts were also evaluated. The results showed that the germination process caused significant changes in the flour composition and properties, causing reduced gelatinization temperature and retarded starch retrogradation; an increased content of free sugars and total organic acids; and a decreased content of tocopherols and phenolic compounds. In terms of bioactivity, the sprouted sorghum flour extract showed better lipid-peroxidation-inhibition capacity and none of the extracts revealed hepatotoxicity or nephrotoxicity, which are important results for the validation of the use of the flours for food purposes. Germination is an efficient and alternative method for grain modification that gives improved technological properties without chemical modification or genetic engineering.

4.
ACS Appl Eng Mater ; 2(2): 415-421, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38419976

RESUMEN

Technological solutions for emerging e-textiles are being sought to enable e-wear technology to be self-sustaining and lightweight. A rippling 1D carbon fiber capacitor design was made with commercial carbon threads as electrodes using simulated sweat solution as the electrolyte. This is particularly relevant for potential sports textile applications in which sweat could serve as an electrochemical energy source. An electrospun cellulose acetate fiber membrane and a commercially available felt were used as separators capable of soaking the electrolyte. These were tested in braided and woven electrode configurations, respectively. Functionalizing the carbon wires with polypyrrole (PPy) enhanced the surface area and significantly increased the specific capacity by approximately an order of magnitude (0.62 F/g). Cyclic voltammetry and charge-discharge tests confirmed the washability and durability of the devices for at least 1000 cycles.

5.
Foods ; 13(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38338619

RESUMEN

Kombucha is a fermented beverage traditionally made from the leaves of Camelia sinensis. The market has drastically expanded recently, and the beverage has become more elaborated with new, healthy food materials and flavors. Pruning and harvesting during coffee production may generate tons of coffee leaves that are discarded although they contain substantial amounts of bioactive compounds, including those found in maté tea and coffee seeds. This study characterized the changes in volatilome, microbial, and sensory profiles of pure and blended arabica coffee leaf tea kombuchas between 3-9 days of fermentation. Acceptance was also evaluated by consumers from Rio de Janeiro (n = 103). Kombuchas (K) were prepared using black tea kombucha starter (BTKS) (10%), sucrose (10%), a symbiotic culture of Bacteria and Yeasts (SCOBY) (2.5%), and a pure coffee leaf infusion (CL) or a 50:50 blend with toasted maté infusion (CL-TM) at 2.5%. The RATA test was chosen for sensory profile characterization. One hundred volatile organic compounds were identified when all infusions and kombucha samples were considered. The potential impact compounds identified in CL K and CL-TM K were: methyl salicylate, benzaldehyde, hexanal, nonanal, pentadecanal, phenylethyl-alcohol, cedrol, 3,5-octadien-2-one, ß-damascenone, α-ionone, ß-ionone, acetic acid, caproic acid, octanoic acid, nonanoic acid, decanoic acid, isovaleric acid, linalool, (S)-dihydroactinidiolide, isoamyl alcohol, ethyl hexanoate, and geranyl acetone. Aroma and flavor descriptors with higher intensities in CL K included fruity, peach, sweet, and herbal, while CL-TM K included additional toasted mate notes. The highest mean acceptance score was given to CL-TM K and CL K on day 3 (6.6 and 6.4, respectively, on a nine-point scale). Arabica coffee leaf can be a co-product with similar fingerprinting to maté and black tea, which can be explored for the elaboration of potentially healthy fermented beverages in food industries.

6.
Graefes Arch Clin Exp Ophthalmol ; 262(5): 1539-1544, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38038729

RESUMEN

PURPOSE: To compare the refractive power profile, subjective depth-of-field and objective optical quality of two advanced monofocal intraocular lenses (IOLs) designed to improve intermediate vision. METHODS: This prospective study evaluated forty-six eyes of twenty-three patients, aged 54-68 years, binocularly implanted with two monofocal enhanced intraocular lenses (IOLs), the Tecnis Eyhance and the Physiol Isopure. Subjective through-focus visual acuity curves were obtained by placing trial lenses in front of the eye while wearing its best spherical-cylindrical correction for distance. Objective optical quality was defined as the area under the modulation transfer function, calculated from the wavefront maps measured with a high-resolution aberrometer. The optical design of both lenses was compared based on their refractive power profiles measured with the lenses immersed in saline solution. RESULTS: Both lenses have progressive aspherical geometries, in which the sagittal power decreases rapidly from the center to the edge of the optical zone. Mean monocular through-focus curves show a best corrected distance visual acuity of - 0.02 logMAR with both lenses. Through-focus visual acuity was marginally higher for the Eyhance, with a difference of 1 letter at the defocus position of - 0.5D and 3 letters between - 1.0D and - 2.0D. Objective assessment of optical quality revealed only a difference of about 2 points in MTF area at distance. CONCLUSION: Both IOLs use a similar approach to improve intermediate vision. The Eyhance showed marginally better subjective performance than the Isopure at the target vergences between - 1.00D and - 2.00D, although these results did not reach statistical significance and were not replicated by the objective findings.

7.
J Sci Food Agric ; 104(1): 104-115, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37535858

RESUMEN

BACKGROUND: Lentils are an ancient legume established worldwide for direct consumption and with great potential for application in food processing. In addition, it is a sustainable crop owing to its ability to scavenge nitrogen and carbon, and it improves the nutrient status of the soil. A diet rich in lentils has been linked to significant health benefits. However, the composition of lentils can be influenced by both the lentil variety and the growing conditions. The aim of this work was to evaluate the nutritional profiles and antioxidant potential, as well as the impact that the type of cultivation (conventional or organic) and the variety could have on these parameters, in different lentil varieties. RESULTS: Overall, carbohydrates are the major macronutrients in all varieties, with notable amounts of fibre (11.62-27.36%) and starch (41.98-50.27%). High amounts of protein and ash were also identified, particularly in the Beluga variety, with 21.9-23.3 and 1.38-1.82 g 100 g-1 fresh weight, respectively. Fructose and sucrose were detected (high-performance liquid chromatography (HPLC) with refraction index detection), along with oxalic, quinic, malic, and shikimic acids (ultra-fast liquid chromatography with photodiode array detection), and α- and γ-tocopherol isoforms (HPLC with fluorescence detection). Fatty acid methyl ester assessment showed the prevalence of polyunsaturated fatty acids (33.5-46.3%). Good antioxidant capacity (thiobarbituric acid reactive substances and oxidative haemolysis inhibition assay) was also noted. CONCLUSION: The results obtained showed that all the varieties analysed are an excellent source of fibre and have a good antioxidant capacity. Lentil variety has a greater influence on its nutritional composition than the type of cultivation. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Antioxidantes , Lens (Planta) , Antioxidantes/análisis , Lens (Planta)/química , Agricultura/métodos , Suelo , Oxidación-Reducción , Ácidos Grasos/metabolismo
8.
Food Funct ; 15(2): 493-502, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38099620

RESUMEN

Edible insects have been proposed as an environmentally and economically sustainable source of protein, and are considered as an alternative food, especially to meat. The migratory locust, Locusta migratoria, is an edible species authorised by the European Union as a novel food. In addition to their nutritional value, edible insects are also sources of bioactive compounds. This study used an in silico approach to simulate the gastrointestinal digestion of selected L. migratoria proteins and posteriorly identify peptides capable of selectively inhibiting the N-subunit of the somatic angiotensin-I converting enzyme (sACE). The application of the molecular docking protocol enabled the identification of three peptides, namely TCDSL, IDCSR and EAEEGQF, which were predicted to act as potential selective inhibitors of the sACE N-domain and, therefore, possess bioactivity against cardiac and pulmonary fibrosis.


Asunto(s)
Locusta migratoria , Animales , Locusta migratoria/química , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Péptidos/metabolismo , Proteínas , Alimentos
9.
Int J Biol Macromol ; 258(Pt 2): 128991, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158063

RESUMEN

The development of carrier-based delivery systems for oral administration of retinoic acid (RA), that provides its release and absorption at intestinal level, is of major relevance in the treatment of acute promyelocytic leukemia. The aim of this work was to evaluate RA bioaccessibility and intestinal transport on ethyl cellulose (EC)- and EC + polyethylene glycol (ECP)-based microparticles and to understand the impact of meal co-ingestion by applying in vitro assays. RA-loaded microparticles were produced by spray-drying with an encapsulation efficiency higher than 90 % for both formulations. The gastric bioaccessibility of RA (after in vitro static digestion of RA-loaded particles) was lower than 3 % for both types of microparticles, with and without meal co-ingestion. Whereas after intestinal digestion, RA bioaccessibility was significantly higher and affected by the type of microparticles and the presence of meal. The digestion of EC- and ECP-based microparticles without diet enabled a significantly higher bioaccessibility of RA when compared to the one recorded for the co-digestion of these microparticles with diet. Herein, RA bioaccessibility decreased from 84 ± 1 to 24 ± 6 % (p < 0.0001) for microparticles EC and 54 ± 4 to 25 ± 5 % (p < 0.001) for microparticles ECP. Moreover, comparing both types of microparticles, RA bioaccessibility was significantly higher for EC-based microparticles digested without diet (p < 0.0001). At last, the bioaccessibility of RA was similar among EC- and ECP-based microparticles when co-digested with diet. Intestinal transport experiments performed in Caco-2 monolayers evidenced that after 2 h of transport the amount of RA retained in the apical compartment was higher than the amount that reached the basolateral compartment evidencing a slow transport at intestinal level that was higher when RA is spiked in the blank of digestion and the meal digestion samples compared to RA dissolved in HBSS (44 ± 6 (p < 0.01) and 38 ± 1 (p < 0.05) vs 26 ± 2 %, respectively).


Asunto(s)
Celulosa/análogos & derivados , Intestinos , Tretinoina , Humanos , Células CACO-2 , Ingestión de Alimentos , Digestión
10.
Mol Ther Nucleic Acids ; 34: 102055, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37928443

RESUMEN

Insulin-like growth factor I (IGF-I) is a growth-promoting anabolic hormone that fosters cell growth and tissue homeostasis. IGF-I deficiency is associated with several diseases, including growth disorders and neurological and musculoskeletal diseases due to impaired regeneration. Despite the vast regenerative potential of IGF-I, its unfavorable pharmacokinetic profile has prevented it from being used therapeutically. In this study, we resolved these challenges by the local administration of IGF-I mRNA, which ensures desirable homeostatic kinetics and non-systemic, local dose-dependent expression of IGF-I protein. Furthermore, IGF-I mRNA constructs were sequence engineered with heterologous signal peptides, which improved in vitro protein secretion (2- to 6-fold) and accelerated in vivo functional regeneration (16-fold) over endogenous IGF-I mRNA. The regenerative potential of engineered IGF-I mRNA was validated in a mouse myotoxic muscle injury and rabbit spinal disc herniation models. Engineered IGF-I mRNA had a half-life of 17-25 h in muscle tissue and showed dose-dependent expression of IGF-I over 2-3 days. Animal models confirm that locally administered IGF-I mRNA remained at the site of injection, contributing to the safety profile of mRNA-based treatment in regenerative medicine. In summary, we demonstrate that engineered IGF-I mRNA holds therapeutic potential with high clinical translatability in different diseases.

11.
Food Res Int ; 173(Pt 2): 113361, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803702

RESUMEN

Coffee leaves contain several bioactive compounds and have been traditionally consumed as a medicinal infusion in the East for centuries. Coffee production generates large amounts of leaves as by-products, which are often wasted in most producing countries because of the low acceptability in the West. Nevertheless, processing and blending coffee leaves may increase aroma and flavor complexity. This study evaluated the volatile and sensory profiles and consumer acceptance of coffee leaf teas compared to two among the most consumed teas (black and maté teas) in Rio de Janeiro. Infusions were made with one experimental and one commercial coffee leaf tea (CLT), two black teas (BT), and one toasted maté tea (TMT) for volatile (GC-MS/MS) and sensory profiles. As an attempt to improve coffee leaf tea acceptance, CLT were also blended (50%) with BT or TMT. Acceptance, Check All That Apply (CATA), and Projective Mapping sensory tests were performed with untrained assessors aged 18-49 (n = 100). Volatile data were standardized by centering and normalization. Sensory data were treated by ANOVA/Fisher test, PCA, and AHCMFA, considering differences at p < 0.05. Ninety-two volatile compounds distributed in 12 classes were identified in different samples. CLT, BT, and TMT infusions shared 19 compounds, including 9 potential impact compounds for aroma and flavor: α-ionone, ß-ionone, hexanal, nonanal, decanal, benzaldehyde, trans-linalool oxide, linalool, and dihydroactinidiolide. The most cited flavor attributes for CLT infusions were herbs/green leaf, woody and refreshing. For TMT and BT, herbs/green leaf, woody, burnt, and fermented were the most cited. These attributes agreed with the volatile profiles. CLT shared 22 compounds with TMT and 28 with BT. Considering pure infusions, TMT presented the highest mean acceptance scores (6.7), followed by Com. and Exp. CLT (6.1 and 5.8, on a 9-point-hedonic scale, respectively). Blending with TMT increased mean acceptance of Exp. CLT (6.4), while blending with BT, downgraded the mean acceptance of Com. CLT (5.3). In Projective Mapping, CLT was considered to have a higher sensory resemblance with TMT than BT. If produced adequately, CLT was shown to have good market potential to support sustainable coffee production and promote health.


Asunto(s)
Coffea , Espectrometría de Masas en Tándem , Promoción de la Salud , Brasil ,
12.
Foods ; 12(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685107

RESUMEN

Mycotoxins contamination is a real concern worldwide due to their high prevalence in foods and high toxicity; therefore, strategies that reduce their gastrointestinal bioaccessibility and absorption are of major relevance. The use of dietary fibers as binders of four mycotoxins (zearalenone (ZEA), deoxynivalenol (DON), HT-2, and T-2 toxins) to reduce their bioaccessibility was investigated by in vitro digestion of biscuits enriched with fibers. K-carrageenan is a promising fiber to reduce the bioaccessibility of ZEA, obtaining values lower than 20%, while with pectin a higher reduction of DON, HT-2, and T-2 (50-88%) was achieved. Three metabolites of mycotoxins were detected, of which the most important was T-2-triol, which was detected at higher levels compared to T-2. This work has demonstrated the advantages of incorporating dietary fibers into a biscuit recipe to reduce the bioaccessibility of mycotoxins and to obtain healthier biscuits than when a conventional recipe is performed due to its high content of fiber.

13.
Int J Mol Sci ; 24(16)2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37629181

RESUMEN

Over the last few years, there has been increasing interest in the use of amorphous carbon thin films with low secondary electron yield (SEY) to mitigate electron multipacting in particle accelerators and RF devices. Previous works found that the SEY increases with the amount of incorporated hydrogen and correlates with the Tauc gap. In this work, we analyse films produced by magnetron sputtering with different contents of hydrogen and deuterium incorporated via the target poisoning and sputtering of CxDy molecules. XPS was implemented to estimate the phase composition of the films. The maximal SEY was found to decrease linearly with the fraction of the graphitic phase in the films. These results are supported by Raman scattering and UPS measurements. The graphitic phase decreases almost linearly for hydrogen and deuterium concentrations between 12% and 46% (at.), but abruptly decreases when the concentration reaches 53%. This vanishing of the graphitic phase is accompanied by a strong increase of SEY and the Tauc gap. These results suggest that the SEY is not dictated directly by the concentration of H/D, but by the fraction of the graphitic phase in the film. The results are supported by an original model used to calculate the SEY of films consisting of a mixture of graphitic and polymeric phases.


Asunto(s)
Electrones , Grafito , Deuterio , Películas Cinematográficas , Hidrógeno , Hollín
14.
Curr Res Food Sci ; 7: 100557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600463

RESUMEN

Food remains a major source of human exposure to chemical contaminants that are unintentionally present in commodities globally, despite strict regulation. Scientific literature is a valuable source of quantification data on those contaminants in various foods, but manually summarizing the information is not practicable. In this review, literature mining and machine learning techniques were applied in 72 foods to obtain relevant information on 96 contaminants, including heavy metals, polychlorinated biphenyls, dioxins, furans, polycyclic aromatic hydrocarbons (PAHs), pesticides, mycotoxins, and heterocyclic aromatic amines (HAAs). The 11,723 data points collected from 254 papers from the last two decades were then used to identify the patterns of contaminants distribution. Considering contaminant categories, metals were the most studied globally, followed by PAHs, mycotoxins, pesticides, and HAAs. As for geographical region, the distribution was uneven, with Europe and Asia having the highest number of studies, followed by North and South America, Africa and Oceania. Regarding food groups, all contained metals, while PAHs were found in seven out of 12 groups. Mycotoxins were found in six groups, and pesticides in almost all except meat, eggs, and vegetable oils. HAAs appeared in only three food groups, with fish and seafood reporting the highest levels. The median concentrations of contaminants varied across food groups, with citrinin having the highest median value. The information gathered is highly relevant to explore, establish connections, and identify patterns between diverse datasets, aiming at a comprehensive view of food contamination.

15.
Food Funct ; 14(19): 8775-8784, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37606616

RESUMEN

The aim of this study was to assess the performance and stability of betacyanin compounds present in enriched extracts of red-fleshed pitaya peels (Hylocereus costaricensis) and the flowers of Amaranthus caudatus; they were evaluated as natural food colorants in tagliatelle pasta and meringue cookies. The recovered natural extracts showed promising stability, maintaining a deep pink color over a storage time of 14 days, without deeply changing the chemical composition. A number of factors were assessed, including the microbial load, texture, color, nutritional value, and contents of organic acids, fatty acids, and even free sugars of the products. Some significant interactions between the type of colorant and storage time contributed to the changes in some analyzed parameters, as can be observed from the results for organic and fatty acids in the tagliatelle pasta and meringue cookies. Another significant achievement was the reduction in the microbial load during the storage time, which strengthens the antibacterial power of these natural extracts.


Asunto(s)
Amaranthus , Betacianinas , Cactaceae , Colorantes de Alimentos , Extractos Vegetales , Amaranthus/química , Antioxidantes/química , Betacianinas/química , Cactaceae/química , Aditivos Alimentarios , Extractos Vegetales/química , Extractos Vegetales/farmacología
16.
Foods ; 12(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37509803

RESUMEN

Given the substantial world coffee production, tons of coffee fruit cascara rich in bioactive compounds are discarded annually. Using this by-product to produce potentially healthy and acceptable foods is a sustainable practice that aggregates value to coffee production and may help improve people's lives. This study aimed to elaborate kombuchas from coffee cascara tea, evaluate their microbial profile, and monitor the changes in the volatile profile during fermentation, together with sensory attributes and acceptance by consumers from Rio de Janeiro (n = 113). Arabica coffee cascaras from Brazil and Nicaragua were used to make infusions, to which black tea kombucha, a Symbiotic Culture of Bacteria and Yeasts (SCOBY), and sucrose were added. Fermentation of plain black tea kombucha was also monitored for comparison. The volatile profile was analyzed after 0, 3, 6, and 9 days of fermentation via headspace solid phase microextraction GC-MS. A total of 81 compounds were identified considering all beverages, 59 in coffee cascara kombuchas and 59 in the black tea kombucha, with 37 common compounds for both. An increase mainly in acids and esters occurred during fermentation. Despite the similarity to black tea kombucha, some aldehydes, esters, alcohols, and ketones in coffee cascara kombucha were not identified in black tea kombucha. Potential impact compounds in CC were linalool, decanal, nonanal, octanal, dodecanal, ethanol, 2-ethylhexanol, ethyl acetate, ethyl butyrate, ethyl acetate, ß-damascenone, γ-nonalactone, linalool oxide, phenylethyl alcohol, geranyl acetone, phenylacetaldehyde, isoamyl alcohol, acetic acid, octanoic acid, isovaleric acid, ethyl isobutyrate, ethyl hexanoate, and limonene. The mean acceptance scores for cascara kombuchas varied between 5.7 ± 0.53 and 7.4 ± 0.53 on a nine-point hedonic scale, with coffee cascara from three-day Nicaragua kombucha showing the highest score, associated with sweetness and berry, honey, woody, and herbal aromas and flavors. The present results indicate that coffee cascara is a promising by-product for elaboration of fermented beverages, exhibiting exotic and singular fingerprinting that can be explored for applications in the food industry.

17.
Arch Toxicol ; 97(9): 2441-2451, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37466788

RESUMEN

It is well established that chemical-peptide conjugation represents the molecular initiating event (MIE) in skin sensitization. This MIE has been successfully exploited in the development of in chemico peptide reactivity assays, with the Direct Peptide Reactivity Assay (DPRA) being validated as a screening tool for skin sensitization hazard as well as an OECD test guideline. This test relies on the use of a high-performance liquid chromatography/ultraviolet detection method to quantify chemical-peptide conjugation through measurement of the depletion of two synthetic peptides containing lysine or cysteine residues, which is labor-intensive and time-consuming. To improve assay throughput, sensitivity, and accuracy, we have developed a spectrophotometric assay for skin sensitization potential based on MIE measurement-the ProtReact assay. ProtReact is also a cheaper, faster, simpler, and more accessible alternative for the DPRA, giving comparable results. A set of 106 chemicals was tested with ProtReact and the peptide depletion values compared with those reported for the DPRA. The predictive capacity of both assays was evaluated with human reference data. ProtReact and DPRA assays show similar predictive capacities for hazard identification (75% and 74%, respectively), although ProtReact showed a higher specificity (86% versus 74%, respectively) and lower sensitivity (69% versus 73%). Overall, the results show that ProtReact assay described here represents an efficient, economic, and accurate assay for the prediction of skin sensitization potential of chemical haptens.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Piel , Humanos , Animales , Péptidos/química , Cisteína/química , Cromatografía Líquida de Alta Presión/métodos , Alternativas a las Pruebas en Animales/métodos
18.
Nutrients ; 15(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37299426

RESUMEN

Sleep is extremely important for the homeostasis of the organism. In recent years, various studies have been carried out to address factors related to sleep patterns and their influence on food choices, as well as on the onset of chronic noncommunicable diseases. The aim of this article is to provide a scientific literature review on the possible role of sleep patterns on eating behavior and the risk of noncommunicable diseases. A search was performed on Medline (PubMed interface) using several keywords (e.g., "Factors Influencing Sleep" OR "Sleep and Chronic Diseases"). Articles published between 2000 and the present date that relate sleep to cyclic metabolic processes and changes in eating behavior were selected. Changes in sleep patterns are increasingly detected today, and these modifications are mainly caused by work and lifestyle conditions as well as a growing dependence on electronic devices. Sleep deprivation and the resultant short sleep duration lead to an increased appetite via an increase in the hunger hormone (ghrelin) and a decrease in the satiety hormone (leptin). Nowadays, sleep is undervalued, and thus often impaired, with consequences for the performance of various body systems. Sleep deprivation alters physiological homeostasis and influences eating behavior as well as the onset of chronic diseases.


Asunto(s)
Enfermedades no Transmisibles , Privación de Sueño , Humanos , Enfermedades no Transmisibles/epidemiología , Sueño/fisiología , Apetito/fisiología , Leptina/metabolismo , Conducta Alimentaria , Ghrelina/metabolismo , Ingestión de Alimentos/fisiología
19.
Microorganisms ; 11(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37317130

RESUMEN

The aim of this work was to assess the natural microbiota of packed fresh-cut apples during refrigerated storage. Two different films were tested for the package, a biodegradable (PLA) film and a conventional and commercial one (OPP). Two antioxidant additives were applied, a natural olive pomace extract and the commercial ascorbic acid used by the industries. The results revealed lower bacteria counts in samples with olive pomace extract and PLA films than in those with ascorbic acid and OPP films after 5 and 12 days of storage. These findings suggest that the use of such natural extracts as additives in fruits could delay the growth of mesophilic bacteria. The characterization and identification of the bacterial isolates from fresh-cut apple samples showed that the most prevalent species were Citrobacter freundii, Staphylococcus warneri, Pseudomonas oryzihabitans, Alcalinogenes faecalis, Corynebacterium jeikeium, Micrococcus spp., Pantoea aglomerans and Bacillus spp. Furthermore, an increase in the microbial diversity during the storage time at refrigerated temperatures was observed, except for the sample treated with olive pomace extract and packaged in OPP film. The highest microbial diversity was found for samples with ascorbic acid as an additive. This could indicate a negative effect of ascorbic acid on the microbial inhibition of apple slices. The natural olive pomace extract demonstrated potential as an antimicrobial additive for fresh-cut apples.

20.
ACS Appl Mater Interfaces ; 15(25): 30727-30741, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37335296

RESUMEN

The increasing demand for flexible electronic devices has risen due to the high interest in electronic textiles (e-textiles). Consequently, the urge to power e-textiles has sparked enormous interest in flexible energy storage devices. One-dimensional (1D) configuration supercapacitors are the most promising technology for textile applications, but often their production involves complex synthesis techniques and expensive materials. This work unveils the use of the novel electrospray deposition (ESD) technique for the deposition of poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS). This deposition methodology on conductive carbon yarns creates flexible electrodes with a high surface area. The deposition conditions of PEDOT:PSS were optimized, and their influence on the electrochemical performance of a 1D symmetric supercapacitor with a cellulose-based gel as an electrolyte and a separator was evaluated. The tests herein reported show that these capacitors exhibited a high specific capacitance of 72 mF g-1, an excellent cyclability of more than 85% capacitance retention after 1500 cycles, and an outstanding capability of bending.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...